9,891 research outputs found

    Some basic considerations of measurements involving collimated direct sunlight

    Get PDF
    The geometry of collimators for devices or instruments dealing with terrestrial direct sunlight is discussed. Effects of the opening angle and slope angle of a collimator on the measurements are investigated with regard to variations of turbidity and air mass. Based on this investigation, geometric dimensions for collimators and certain realistic terrestrial reference conditions are recommended for the purpose of solar cell calibration in terrestrial applications

    Surface temperature distribution along a thin liquid layer due to thermocapillary convection

    Get PDF
    The surface temperature distributions due to thermocapillary convections in a thin liquid layer with heat fluxes imposed on the free surface were investigated. The nondimensional analysis predicts that, when convection is important, the characteristics length scale in the flow direction L, and the characteristic temperature difference delta T sub o can be represented by L and delta T sub o approx. (A2Ma)/1/4 delta T sub R, respectively, where L sub R and delta sub R are the reference scales used in the conduction dominant situations with A denoting the aspect ratio and Ma the Marangoni number. Having L and delta sub o defined, the global surface temperature gradient delta sub o/L, the global thermocapillary driving force, and other interesting features can be determined. Numerical calculations involving a Gaussian heat flux distribution are presented to justify these two relations

    Multivariable Repetitive-predictive Controllers using Frequency Decomposition

    No full text
    Repetitive control is a methodology for the tracking of a periodic reference signal. This paper develops a new approach to repetitive control systems design using receding horizon control with frequency decomposition of the reference signal. Moreover, design and implementation issues for this form of repetitive predictive control are investigated from the perspectives of controller complexity and the effects of measurement noise. The analysis is supported by a simulation study on a multi-input multi-output robot arm where the model has been constructed from measured frequency response data, and experimental results from application to an industrial AC motor

    Screen printed interdigitated back contact solar cell

    Get PDF
    Interdigitated back contact solar cells are made by screen printing dopant materials onto the back surface of a semiconductor substrate in a pair of interdigitated patterns. These dopant materials are then diffused into the substrate to form junctions having configurations corresponding to these patterns. Contacts having configurations which match the patterns are then applied over the junctions

    High voltage planar multijunction solar cell

    Get PDF
    A high voltage multijunction solar cell is provided wherein a plurality of discrete voltage generating regions or unit cells are formed in a single generally planar semiconductor body. The unit cells are comprised of doped regions of opposite conductivity type separated by a gap or undiffused region. Metal contacts connect adjacent cells together in series so that the output voltages of the individual cells are additive. In some embodiments, doped field regions separated by a overlie the unit cells but the cells may be formed in both faces of the wafer

    Method of making a high voltage V-groove solar cell

    Get PDF
    A method is provided for making a high voltage multijunction solar cell. The cell comprises a plurality of discrete voltage generating regions, or unit cells, which are formed in a single semiconductor wafer and are connected together so that the voltages of the individual cells are additive. The unit cells comprise doped regions of opposite conductivity types separated by a gap. The method includes forming V-shaped grooves in the wafer and thereafter orienting the wafer so that ions of one conductivity type can be implanted in one face of the groove while the other face is shielded. A metallization layer is applied and selectively etched away to provide connections between the unit cells

    High voltage v-groove solar cell

    Get PDF
    A high voltage multijunction solar cell comprises a number of discrete voltage generating regions, or unit cells, which are formed in a single semiconductor wafer and are connected together so that the voltages of the individual cells are additive. The unit cells comprise doped regions of opposite conductivity types separated by a gap. The method includes forming V-shaped grooves in the wafer and orienting the wafer so that ions of one conductivity type can be implanted in one face of the groove while the other face is shielded. A metallization layer is applied and selectively etched away to provide connections between the unit cells

    Planar multijunction high voltage solar cells

    Get PDF
    Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators

    Confirmatory factor analysis of the Conception for Teaching and Learning Questionnaire (CTLQ)

    Get PDF
    The two-factor (traditional conception, constructivist conception) of the Conception about Teaching and Learning Questionnaire (CTLQ) was examined through confirmatory factor analysis with a sample of 877 pre-service teachers from the National Institute of Education in Singapore. Analysis of the results indicated that the two-factor structure of the CTLQ was not supported. A principal axis factor analysis revealed a five-factor solution. By testing two alternative (4-factor and 5-factor) models for model fitness, the 5-factor was found to have the best fit. This study concludes with suggestions for further study with more diverse samples and cultures. © 2008 De La Salle University, Philippines

    Directed polymers in random media under confining force

    Full text link
    The scaling behavior of a directed polymer in a two-dimensional (2D) random potential under confining force is investigated. The energy of a polymer with configuration {y(x)}\{y(x)\} is given by H\big(\{y(x)\}\big) = \sum_{x=1}^N \exyx + \epsilon \Wa^\alpha, where η(x,y)\eta(x,y) is an uncorrelated random potential and \Wa is the width of the polymer. Using an energy argument, it is conjectured that the radius of gyration Rg(N)R_g(N) and the energy fluctuation ΔE(N)\Delta E(N) of the polymer of length NN in the ground state increase as Rg(N)NνR_g(N)\sim N^{\nu} and ΔE(N)Nω\Delta E(N)\sim N^\omega respectively with ν=1/(1+α)\nu = 1/(1+\alpha) and ω=(1+2α)/(4+4α)\omega = (1+2\alpha)/(4+4\alpha) for α1/2\alpha\ge 1/2. A novel algorithm of finding the exact ground state, with the effective time complexity of \cO(N^3), is introduced and used to confirm the conjecture numerically.Comment: 9 pages, 7 figure
    corecore